Geometric inequalities for non-integrable distributions in statistical manifolds with constant curvature

نویسندگان

چکیده

In this paper, we make Euler inequality, Chen first inequality and Chen-Ricci for non-integrable distributions in statistical manifolds with constant curvatures. Moreover, investigate the conditions equality cases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isoperimetric-type inequalities on constant curvature manifolds

By exploiting optimal transport theory on Riemannian manifolds and adapting Gromov’s proof of the isoperimetric inequality in the Euclidean space, we prove an isoperimetric-type inequality on simply connected constant curvature manifolds.

متن کامل

integral inequalities for submanifolds of hessian manifolds with constant hessian sectional curvature

in this paper, we obtain two intrinsic integral inequalities of hessian manifolds.

متن کامل

A Geometric Characterization of Finsler Manifolds of Constant Curvature

We prove that a Finsler manifold Fm is of constant curvature K = 1 if and only if the unit horizontal Liouville vector field is a Killing vector field on the indicatrix bundle IM of Fm.

متن کامل

Geometric Realizations of Curvature Models by Manifolds with Constant Scalar Curvature

We show any Riemannian curvature model can be geometrically realized by a manifold with constant scalar curvature. We also show that any pseudo-Hermitian curvature model, para-Hermitian curvature model, hyperpseudo-Hermitian curvature model, or hyper-para-Hermitian curvature model can be realized by a manifold with constant scalar and ⋆-scalar curvature.

متن کامل

Classification of Totally Umbilical CR-Statistical Submanifolds in Holomorphic Statistical Manifolds with Constant Holomorphic Curvature

In 1985, Amari [1] introduced an interesting manifold, i.e., statistical manifold in the context of information geometry. The geometry of such manifolds includes the notion of dual connections, called conjugate connections in affine geometry, it is closely related to affine geometry. A statistical structure is a generalization of a Hessian one, it connects Hessian geometry. In the present paper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2021

ISSN: ['2406-0933', '0354-5180']

DOI: https://doi.org/10.2298/fil2111585h